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TOPOLOGY OF ALMOST CONTACT MANIFOLDS

D. E. BLAIR & S. I. GOLDBERG

Introduction

In his Collogquium Lectures on G-structures [2], S. S. Chern asked for the
conditions, both local and global, on a C> manifold in order that a linear
differential form » exist such that

7 A (dp)? %0

for a given value of p. The form 5 defines a differential system and it is im-
portant to study the local and global properties of its integral manifolds. To
this end, the notion of a quasi-Sasakian structure on an almost contact metric
manifold was introduced by one of the authors [1] and its main properties
developed. In the present paper their topological properties are considered
and it is shown that both compact Sasakian and cosymplectic manifolds have -
global properties similar to compact Kaehler manifolds. Examples are the
unit hypersphere $*** in Euclidean space, and in fact, the circle bundles over
any compact Hodge variety. In the latter class, examples are provided by
M x §* where M is'any compact Kaehler manifold. As one might expect,
therefore, not only locally, but topologically as well, the compact cosymplec-
tic spaces are the proper odd dimensional analogues of the compact Kaehler
manifolds. A complete, but not compact, simply connected cosymplectic
manifold is a product with one factor Kaehlerian.

The notation and terminology in this paper will be the same as that em-
ployed in [1].

1. Topology of Sasakian manifolds

Define two operators L and /4, dual to each other, on a quasi-Sasakian
manifold by L = &(@) and 4 = (@) where ¢ and . are respectively the exterior
and interior product operators. We say that a p-form a(p > 2) is effective if
Aa = 0. Since (@) = = (@)= where * is the Hodge star isomorphism, A = * L *.

An orthonormal basis of £2**! on an almost contact metric manifold M?»+?
of the form {£, X,, X,..=¢X,}, i=1, ---, n, is called a ¢-basis. It is well
known that such a basis always exists. For, let V' = {X e M, | g(X, §) = 0}.
Equations (1.1) and (1.2) of [1] show that ¢ |, is an almost complex structure
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on V and ¢|, is a Hermitian metric. If an orthonormal basis of V' of the
form {X;, (¢],)X;}, i=1, .-, nis then chosen, we obtain a ¢-basis of M,,.
In terms of a ¢-basis {£, X;, X,.} with dual basis {7, v;, @,.} we have

‘ @ = Zz @; /N Wixy ./1 = Zi f(wi«)!(wi) .

Lemma 1.1. On a quasi-Sasakian manifold M**+* the operators L and A
satisfy

(AL — L))o = (n — p)x

for any p-form .

Proof. By linearity it suffices to consider the decomposable forms w;, A
o Nogg Nog A\ Nog, g+Tr=p and g Awg A N agg Ao N
<<+ Aoy, g+ r=p—1, The result then follows by a long computation
similar to that in [4] for almost hermitian manifolds.

S. Tachibana [6] proved that if « is a harmonic p-form with 1 < p < non
a compact Sasakian manifold M***!, n > 1, then « is ‘orthogonal’ to &, that
is, «(&)a = 0. '

Define an operator C on p-forms in an almost contact manifold by

CalX,, - -, X,) = al¢X,, -- -, 8X,) .

Lemma 1.2. In a compact (2n + 1)-dimensional quasi-Sasakian manifold
of rank 2n + 1 or 1 the operator C sends harmonic p-forms into harmonic
p-forms for p < n in the Sasakian case and for p = 1, - -+, 2n in the cosym-
plectic case.

Proof. The rank 2n + 1 case is a consequence of the fact that harmonic
p-forms are orthogonal to & for 1 < p < n (see [6]). The rank 1 case follows
from Theorem 5.2 of [1] since then the linear transformation field ¢ is cova-
riant constant. We give the proof for 1-forms only, the corresponding state-
ment for pforms, p > 1, following in an analogous manner. We require the
following fact valid for p-forms. Since Fg = 0,

VCoux =Clo .
For,

VzCo(Yy, - - -, Yp) = Xa(¢Y1, Y ¢Yp) - :}; a(,éYl, e, oV Yy, -, ¢Yp)
= Xa(¢Y1’ Tt ¢Yp) - fia@yl’ T VX¢Y1'9 Tty ¢YP)
= VX“(¢Y1, ) ¢Yp) = CVX“(YJ, s Yp) .

Applying the interchange formula to ¢ we see that the operator C and the
Ricci curvature operator 0 commute, that is,

oCc=CQ.
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Thus, since
Qo = <lVFa, - >

is a necessary and sufficient condition for a 1-form « on a compact manifold
to be harmonic (see [4, Theorem 3.2.3]), we obtain

<PrCe,X> = <CPPa, X>
= <PPa, $X>
= Qu(gX)
= CQa(X)
= <QCa,X> .

It is known that the odd-dimensional betti numbers B, (p: odd) of a com-
pact Kaehler manifold are even [4]. Here we prove an analogous result for
compact Sasakian manifolds not valid for cosymplectic manifolds since the
first betti number of §* X PC; is 1. (Observe that Cy vanishes on a quasi-
Sasakian manifold of any rank, since Cn(X) = 5(¢X) = 0. So, since 3 is
harmonic on a cosymplectic manifold, Cy and 7 are not independent.)

Theorem 1.3. The p-th betti number of a compact Sasakian manifold
M?*»+V js even if pis odd and p < n. Forp > n+ 1, B, is even if p is even.

Proof. The second statement follows from the first by Poincaré duality.
So let « be a harmonic p-form with p < n; we shall show that « and Cx are
independent, that is, Ca 5= Aa. First of all we have using equations (1.1) of [1]

Ca(X,, -, X,) = a(8’X,, -+, 6°X,)
=a(— X, + p(XD§, -+, — X5 + X )E)
= (- l)pa(Xn ety Xp)

since (&) = 0. Hence if Ca = 0, « must also vanish. Suppose now that
Cua = 2a. Then C?aw = 1Ca = 2. But C?o = (—1)?a, so if p is odd, 22a =
— a, thatis « = 0.

Theorem 1.4. There are no covariant constant p-forms on a compact
Sasakian manifold M**** for 1 < p < 2n.

Proof. Let « be a covariant constant p-form with 1 < p < n and let

X, Y, -, Y, €& Then since (&)a =0 and Fzf = — %¢X (see [1,
Lemma 4.3]), we have
0 = (Vux(eE)YaDN(X s, - -, ¥p) = ((Wsz5))(X o5 -+, ¥p)
= - %‘“(¢2X, Y?.’ ] YP) = —;—O((X, Yz’ . ';Yp) .

Thus « = 0. The same is true for forms of degree p,n + 1 < p < 2n, since
* ¢ is covariant constant whenever « is, and = is an isomorphism.
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Applying (4, Theorem 3.2.2] we obtain

Corollary 1.5. If the Ricci curvature of a compact Sasakian manifold is
positive semi-definite, B, = 0.

A contact manifold M is homogeneous if there is a connected Lie group
which acts transitively and effectively on M as a group of diffeomorphisms
and leaves the contact form invariant. A contact symmetric space is a homo-
geneous contact manifold which is Riemannjan symmetric with respect to the
contact metric structure.

The Ricci curvature of a compact homogeneous Sasakian manifold M may
not be positive semi-definite. For, let A(5?***) be the automorphism group of
S§**+! with the almost contact metric structure 2’ = (¢, £, 5, ). A(S*™*) is
transitive. If f e AS**Y)

fx(ag + @—a)y @) =ag + (@ — Ay @7

where a is a constant. Hence, A($*"**!) is also the automorphism group of
the Sasakian structure 3 = (¢, &, 7, g) with

¢ =9, E:_‘l?{:, 7 = ay, g:ag—q—(az—a);y@;y.

A ¢-basis for ¥ can be modified to a ¢-basis for £, so from the sectional
curvatures K, and K,; of ¥ and %,

Kw = %[Kw + 30 —a] = —4—_—3_a .

If we put @ = 2, then K;;, = —1.

Theorem 1.6. The fundamental group =.(M) of a compact symmetric
Sasakian manifold M is finite.

Proof. Since a harmonic form on a compact symmetric space has vanish-
ing covariant derivative, B, = 0 by Theorem 1.4. Let M = G/K and assume
that K is connected. Consider the exact homotopy sequence

0 — m(K) — 7,(G) —» m(M) — 0.

Since z(G) is abelian, so is 7, (M). Hence H, (M, Z) =~ n,(M)/[r (M), n,(M)]
=~ x(M). Thus, since B, =0, H(M, Z) is a finite group since it is a finitely
generated torsion group, so (M) is finite also.

If K is not connected, let K, be the connected component of the identity in
K and consider the exact sequence

0 - =(G/Ky)) — n(G/K) — K/K, — 0.

Since K is compact, K/K, is finite. Hence, since z,(G/K) is an extension of
=(G/K,) by K/K,, it is finite.
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Added in proof. If M = G/K is simply connected, one of the authors has
recently shown that M is (globally) isometric to a Euclidean sphere (see
S. 1. Goldberg, On the topology of compact contact manifolds, to appear in
Tohoku Math. J., August, 1968).

2. Topology of cosymplectic manifolds

In terms of a ¢-basis {£, X, X,.} with dual basis {3, w;, w,.} we define six
new operators as follows

d/ = ZZ 6(0)7:)7.3.’7:7 d” = Z’L E(wi‘)yl'i«’ do = 5(0)175
0= —Titdw)l g, &' =—2itdo Wy, 6°=—pP;.

Then, d=d + d” + d° and § = & + & + &°.
Lemma 2.1. On a cosymplectic manifold

6L —Ls=d —d’.

The proof is a computation similar to the corresponding one for Kaehler
manifolds (see [4]); it is important to note the role played by Jy@ = 0 for
every X € £*** in this computation. Thus, lemmas of this sort do not hold
on non-cosymplectic quasi-Sasakian manifolds. We also make use of the fact
that

0°L —L5° =0.

It should also be kept in mind that @ #* dy on a cosymplectic manifold but
that @ = 0 and dy = 0.
The following lemmas are analogues of those for Kaehler manifolds [4].
Lemma 2.2. On a cosymplectic manifold

d/d/ ___O’ dld//+d//d/ =O’
' =0, d°d +dd°> =0,
d°d° =0, d°d” + d"d° = 0 .

Lemma 2.3. L commutes with the Laplace-Beltrami operator 4.

Thus we see that L maps A%, the space of harmonic p-forms into A%*2,
the space of harmonic (p + 2)-forms.

Theorem 2.4. The betti numbers of a compact cosymplectic manifold are

non-zero.

Proof. We deduce B,, # 0 by showing the existence of a non-zero harmo-
nic 2p-form, 1 < p < n; since the manifold is odd-dimensional, B,,,, = 0
follows by Poincaré duality. Since F/y@ = O for every Y e £****, we see that
4@ = 0, that is @ is harmonic. Now suppose ¢?~* is harmonic, then

A(P?) = ALP?~) = L") = 0
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by Lemma 2.3, Thus @7 is harmonic for every p, 1 < p < n, and since
@ # 0, @* # 0 completing the proof.

In this regard let us discuss briefly the case of a compact quasi-Sasakian
manifold M** ! of rank r = 2p + 1 under the hypothesis that V3¢ = O for
every X ¢ §**1, An example of such a space can be given by taking the direct
product of a compact Sasakian manifold M*?+* and a compact Kaehler mani-
fold M?*¢ (see [1, Theorem 3.2]). Then, Fy® = 0 for every X e £***' and
6(X,Y) = g(X, 8Y). Hence @ is harmonic and ¢ = 6 + dy. Now O re-
stricted to the Kaehler manifold M*, g = n — p, is the fundamental 2-form
of the Kaehler structure [1], and @(X, ¥Y) = O if either X or ¥ is in §°7*",
Hence, @+ 0 for 1 <i < g giving us the following theorem which generalizes
Theorem 2.4.

Theorem 2.5. In the locally decomposable case the first q even-dimen-
sional betti numbers of a compact quasi-Sasakian manifold M* ' of rank
2p + 1, p + g = n, are different from zero.

Several lemmas leading to a monotonicity condition on the betti numbers
of a cosymplectic manifold are now given. These are valid for any quasi-
Sasakian manifold no matter what its rank.

Lemma 2.6. The operators L and /A satisfy

(AL* — L*f)a = k(n — p — k + DL**a

for any p-form .

Proof. By induction using Lemma 1.1.

Lemma 2.7. Every p-form « with p < n + 1 may be written uniquely as
a sum

o = Z Lkﬁp—?k
k=0
where the §3,_,’s are effective forms of degree p — 2k and r = [%}

Proof. The proof is analogous to that of the corresponding result for
Hermitian manifolds (see [4, Theorem 5.7.1]), and so is omitted.

Lemma 2.8. /L is an automorphism of the space of p-forms AP for p <
n — 1. Furthermore, L is an isomorphism of N? into N?*? forp < n — 1.

Proof. Analogous to the proofs of the corresponding results for Hermitian
manifolds [4, Corollaries 5.7.1 and 5.7.2].

A theorem due to S. S. Chern [3] says that if M is a compact Riemannian
manifold with G the structural group of its tangent bundle, W,, - - -, W, the
irreducible invariant subspaces of A% under the action of G, and Py, the
projection map of A% into W,, then if a p-form « is harmonic so is Py «.
Now, let A% denote the subspace of A% of effective harmonic p-forms. In
our case, since @ is invariant under the action of G C U(n) X 1, each
L*A %% is an invariant subspace of A%. Thus, each L* A &% is a sum of W,’s
and hence the projection of a harmonic form into L* A 2-% is again harmonic.
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We therefore have the following statement.
Proposition 2.9. Every harmonic p-form a on a cosymplectic manifold
M+t with p < n 4+ 1 may be written uniquely as a sum

=2 Lk,ep-sk
k=0

Where the §8,_y,.’s are effective harmonic forms of degree p — 2k and r = [%}

(Since a harmonic p-form p < n, on a compact Sasakian manifold is easily
seen to be effective, Proposition 2.9 is trivially true in that case. For cosym-
plectic manifolds, the effective harmonic forms are not devoid of geometric
content.)

From Lemmas 2.3 and 2.8, it is seen that L is an isomorphism of A% into
NE:. Thus,

Theorem 2.10. The betti numbers B, of a compact cosymplectic manifold
M1 satisfy

Bp SBpa-z

fori<p<n-—1.

The difference B, — B,_, may be measured in terms of the number of ef-
fective harmonic forms of degree p, p < n + 1.

Theorem 2.11. On a compact cosymplectic manifold, the dimension of
the space of effective harmonic p-formsis B, — B,_,,p < n + 1.

Proof. Analogous to the proof of the corresponding resuit for Kachler
manifolds [4, Theorem 5.7.2].

Observe that on a quasi-Sasakian manifold of any rank (§)¢" =0, so
«(E(n A O™ = @*, from which

P AND*#0

—a statement resembling the definition of a contact manifold. (A (2r 4+ 1)-
dimensional manifold admitting a global 1-form » and 2-form @ such that
7 A @* % Q is called almost contact by S. Takizawa, and cosymplectic if,
moreover, @ is closed {7]. They have been studied by means of sheaf theory
but, in view of their generality, no examples were provided other than the
contact manifolds where @ = dy.)

A relation between » and ¢ is suggested. Since ¢()s(7)@" = @~,

# Q" = x o(y) wx &() #x " = e(n)e(n) » O™ = f7

where = «(3) * §*. We show that |f| =|@¢"|. To this end, observe that
Exl=g@* A\ = @"=fy A Q" where ¢>= <@", ¢*>. Thus, ¢* = f* &(y) = O
= f(n) * @™ = f2

Proposition 2.12. On a quasi-Sasakian manifold the forms 7 and @ are
related by
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1
||
Corollary 2.13. On a quasi-Sasakian manifold
PAQ = £ |P"|x1.

By Lemma 4.3 and Theorem 5.2 of [1] it is seen that on a cosymplectic
manifold the 1-forms 5 and = @™ have vanishing covariant derivatives. Thus,
[@™] is a constant.

Corollary 2.14. On a cosymplectic manifold the 1-form @™ is a constant
multiple of 7.

Note that on a cosymplectic manifold harmonic forms are not, in general,
orthogonal to the ‘vertical’ vector field £. For ((&)y = 1. In addition, ¢(&) x @
#+ 0; in fact, y A @™ = 0 implies y A @ # 0.

Observe that from Theorem 3.1 of [1] that a cosymplectic manifold is
locally the product of a Kaehler manifold with a circle or a line.

For complete simply connected cosymplectic manifolds M the only ex-
amples are given by M = M’ X M’ where M’ is Kaehlerian. Indeed, since
Fo=0,M,, =XeM,|®0(X, M,)= 0} defines a parallel distribution. There-
fore, the orthogonal complement M, (with respect to the Riemannian metric)
also gives a parallel distribution. Applying the de Rham decomposition theo-
rem [5] we obtain M = M’ X M” where ¢ = 0 on M’ and ¢ has maximal
rank on M’. Thus, since @ is closed, M” is symplectic. In fact, since '
vanishes, M”’ is a Kaehler manifold. However these manifolds are not com-
pact by Theorem 2.4,

To construct the normal almost contact structure on the cosymplectic
manifold M X S given in the Introduction take any point (i, ) of M X §!
and set (X, Y)=(JX,0), X e M,, Y e 5}, £§= (0, d/df) and » = (0, d) where
J is the complex structure of M.

= @"

7=z
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